mapreduce执行速度慢的原因

自身执行速度慢的原因

  1. CPU、内存小、网络不好都有可能导致运行速度慢
  2. 出现数据倾斜
  3. map和reduce数设置不合理
  4. 小文件过多
  5. 大量的不可分块的超大文件
  6. spilt次数过多

优化方案:

  1. 解决数据倾斜:数据倾斜可能是partition不合理,导致部分partition中的数据过多,部分过少。可通过分析数据,自定义分区器解决。
  2. 合理设置map和reduce数:两个都不能设置太少,也不能设置太多。太少,会导致task等待,延长处理时间;太多,会导致 map、 reduce 任务间竞争资源,造成处理超时等错误。
  3. 设置map、reduce共存:调整slowstart.completedmaps参数,使map运行到一定程度后,reduce也开始运行,减少 reduce 的等待时间。
  4. 合并小文件:在执行mr任务前将小文件进行合并,大量的小文件会产生大量的map任务,增大map任务装载次数,而任务的装载比较耗时,从而导致 mr 运行较慢。
  5. 减少spill次数(环形缓冲区,调大环形缓冲区的内存,从而接收更多数据):通过调整io.sort.mb及sort.spill.percent参数值,增大触发spill的内存上限,减少spill 次数,从而减少磁盘 IO。
  6. 减少merge次数(mapreduce两端的合并文件的数目):通过调整io.sort.factor参数,增大merge的文件数目,减少merge的次数,从而缩短mr处理时间。

相比Spark执行速度慢的原因

IO

其实Spark和MapReduce的计算都发生在内存中,区别在于:

  • MapReduce通常需要将计算的中间结果写入磁盘,然后还要读取磁盘,从而导致了频繁的磁盘IO。
  • Spark则不需要将计算的中间结果写入磁盘,这得益于Spark的RDD(弹性分布式数据集,很强大)和DAG(有向无环图),其中DAG记录了job的stage以及在job执行过程中父RDD和子RDD之间的依赖关系。中间结果能够以RDD的形式存放在内存中,且能够从DAG中恢复,大大减少了磁盘IO。

Shuffle的不同

Spark和MapReduce在计算过程中通常都不可避免的会进行Shuffle,两者至少有一点不同:

  • MapReduce在Shuffle时需要花费大量时间进行排序,排序在MapReduce的Shuffle中似乎是不可避免的;
  • Spark在Shuffle时则只有部分场景才需要排序,支持基于Hash的分布式聚合,更加省时;

多进程模型 vs 多线程模型的区别

MapReduce采用了多进程模型,而Spark采用了多线程模型。多进程模型的好处是便于细粒度控制每个任务占用的资源,但每次任务的启动都会消耗一定的启动时间。就是说MapReduce的Map Task和Reduce Task是进程级别的,而Spark Task则是基于线程模型的,就是说mapreduce 中的 map 和 reduce 都是 jvm 进程,每次启动都需要重新申请资源,消耗了不必要的时间(假设容器启动时间大概1s,如果有1200个block,那么单独启动map进程事件就需要20分钟)

Spark则是通过复用线程池中的线程来减少启动、关闭task所需要的开销。(多线程模型也有缺点,由于同节点上所有任务运行在一个进程中,因此,会出现严重的资源争用,难以细粒度控制每个任务占用资源)

参考链接:

https://www.zhihu.com/question/31930662/answer/1247877997